首页> 外文OA文献 >Randomness in completeness and space-bounded computations
【2h】

Randomness in completeness and space-bounded computations

机译:完整性和空间计算的随机性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of computational complexity investigates the role of various computational resources such as processing time, memory requirements, nondeterminism, randomness, nonuniformity, etc. to solve different types of computational problems. In this dissertation, we study the role of randomness in two fundamental areas of computational complexity: NP-completeness and space-bounded computations.The concept of completeness plays an important role in defining the notion of \u27hard\u27 problems in Computer Science. Intuitively, an NP-complete problem captures the difficulty of solving any problem in NP. Polynomial-time reductions are at the heart of defining completeness. However, there is no single notion of reduction; researchers identified various polynomial-time reductions such as many-one reduction, truth-table reduction, Turing reduction, etc. Each such notion of reduction induces a notion of completeness. Finding the relationships among various NP-completeness notions is a significant open problem. Our first result is about the separation of two such polynomial-time completeness notions for NP, namely, Turing completeness and many-one completeness. This is the first result that separates completeness notions for NP under a worst-case hardness hypothesis.Our next result involves a conjecture by Even, Selman, and Yacobi [ESY84,SY82] which states that there do not exist disjoint NP-pairs all of whose separators are NP-hard via Turing reductions. If true, this conjecture implies that a certain kind of probabilistic public-key cryptosystems is not secure. The conjecture is open for 30 years. We provide evidence in support of a variant of this conjecture. We show that if there exist certain secure one-way functions, then the ESY conjecture for the bounded-truth-table reduction holds.Now we turn our attention to space-bounded computations. We investigate probabilistic space-bounded machines that are allowed to access their random bits {\em multiple times}. Our main conceptual contribution here is to establish an interesting connection between derandomization of such probabilistic space-bounded machines and the derandomization of probabilistic time-bounded machines. In particular, we show that if we can derandomize a multipass machine even with a small number of passes over random tape and only O(log^2 n) random bits to deterministic polynomial-time, then BPTIME(n) ⊆ DTIME(2^{o(n)}). Note that if we restrict the number of random bits to O(log n), then we can trivially derandomize the machine to polynomial time. Furthermore, it can be shown that if we restrict the number of passes to O(1), we can still derandomize the machine to polynomial time. Thus our result implies that any extension beyond these trivialities will lead to an unknown derandomization of BPTIME(n).Our final contribution is about the derandomization of probabilistic time-bounded machines under branching program lower bounds. The standard method of derandomizing time-bounded probabilistic machines depends on various circuit lower bounds, which are notoriously hard to prove. We show that the derandomization of low-degree polynomial identity testing, a well-known problem in co-RP, can be obtained under certain branching program lower bounds. Note that branching programs are considered weaker model of computation than the Boolean circuits.
机译:对计算复杂性的研究调查了各种计算资源(例如处理时间,内存需求,不确定性,随机性,不均匀性等)的作用,以解决不同类型的计算问题。在本文中,我们研究了随机性在计算复杂性的两个基本领域中的作用:NP完整性和空间有界计算。完整性的概念在定义计算机科学中的\ u27hard \ u27问题的概念中起着重要的作用。直观上,NP完全问题捕获了解决NP中任何问题的困难。多项式时间约简是定义完整性的核心。但是,没有减少的单一概念。研究人员确定了多项式时间的约简,例如多对一约简,真值表约简,图灵约简等。每种这样的约简概念都引出完整性的概念。在各种NP完整性概念之间找到关系是一个重大的开放问题。我们的第一个结果是关于NP的两个这样的多项式时间完整性概念的分离,即图灵完整性和多一个完整性。这是在最坏情况下的硬度假设下分离NP完整性概念的第一个结果。我们的下一个结果涉及Even,Selman和Yacobi [ESY84,SY82]的猜想,该猜想表明不存在不相交的NP对。通过图灵缩减,其分隔符为NP-hard。如果为真,则此推测暗示某种概率的公共密钥密码系统不安全。该猜想开放了30年。我们提供证据支持这种猜想的变体。我们证明,如果存在某些安全的单向函数,则有界真值表归约的ESY猜想成立。现在我们将注意力转移到空间有界的计算上。我们研究了概率空间受限的机器,这些机器被允许{\ em多次}访问其随机位。我们在这里的主要概念贡献是在这种概率受空间限制的机器的去随机化与概率受时间限制的机器的去随机化之间建立有趣的联系。尤其是,我们表明,如果即使在随机磁带上进行少量通过并且仅将O(log ^ 2 n)个随机位用于确定多项式时间,就可以对多遍机进行随机化,则BPTIME(n)⊆DTIME(2 ^ {上)})。请注意,如果将随机位数限制为O(log n),则可以将机器随机化为多项式时间。此外,可以证明,如果我们将通过次数限制为O(1),我们仍然可以将机器随机化为多项式时间。因此,我们的结果表明,超出这些琐碎性的任何扩展都将导致BPTIME(n)的未知去随机化。我们的最后贡献是,在分支程序下限下对概率限时机器进行了去随机化。对有时间限制的概率机器进行非随机化的标准方法取决于各种电路下限,众所周知,这很难证明。我们表明,可以在某些分支程序下限下获得低阶多项式同一性测试的非随机化,这是co-RP中的一个众所周知的问题。注意,分支程序被认为是比布尔电路更弱的计算模型。

著录项

  • 作者

    Mandal, Debasis;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号